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ON THE INSTABILITY OF THE FLOW IN AN OSCILLATING
TANK OF FLUID

Philip Hall'
Department of Mathematies
University of Manchester
Manchester M13 9PL
UNITED KINGDOM

ABSTRACT

The instability of a viscous fluid inside a rectangular tank oscillating about an axis
parallel to the largest face of the tank is investigated in the linear regime. The Bow is shawn
to be unstable to both longitudinal roll and standing wave instabilities. The particular
cases of low and high oscillation frequencies are discussed in detail and the results obtained
for the standing wave instability at low frequencies shed light on the corresponding steady
flow instability problem. The relationship between the roll instability and convective or
centrifugal instabilities in unsteady boundary layers is discussed. The eigenvalue problems
associated with the roll and standing wave instabilities are solved using Floquet theory and
a combination of numerical and asymptotic methods. The results obtained are compared
to the recent experimental investigation of Bolton and Maurer(1992} which indeed provided

the stimulus for the present investigation.
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NASA Contract No. NAS1-19480 while the author was in residence at the Institute for Computer Apph
cations in Science and Engineering (ICASE), NASA Langley Rosearch Center. Hampton, VA 23681-0001
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1 Introduction

Our concern is with the mstability of the unsteady How of o viceous thad side s

rectangitlar tank oscillating about an axis parallel to one face of the tank. The orientaton

of the axix of oscillation s shown in Figure (L1 An experimental investisation of the

different regimes for the flow inside the tank is deseribed in Bolton and Manver (19921
|

herafter veferred to as BM. If the geometry of the tank shown in Frenre o115 i~ <nehy

that

then the basie flow is unidivectional (in the o7 direction) and dependent onby on y°
and time. In fact the low is an exact solution of the Navier Stokes cquation . e
stability of the flow is therefore governed by a svstem of partial differential cquations
with coethicients periodic in time. We shall show that the linear instability prolidens is
closely related to those for centrifugal and convective instabilities in thime periodic flows,
Before discussing the results of BM we shall first briefly review the relevant derails of
the related flows mentioned above.

The experimental and theoretical investigations of the centrifugal instability of a
Stokes layer by Seminara and Hall ( 1976) showed that time-periodie flows can snstain
instabilities not accessible to quasi-steady instability theories based on the instantancons
velocity profiles. Seminara and Hall (1976) found that a torsionally oseillating eviinder
in a viscous fluid drives an unsteady boundary laver which is unstable to Tavlor vortex
like instabilities at high enough frequencies of oscillation. A more detailed experimental
investigation of the problem by Park, Barenghi and Donnelly {1980} confirmed the see-
ondary subharmonic destabilization of the most dangerous mode fornd by Seminara and
Hall (1976). An approximate description of this subharmonic breakdown was later aiven
by Hall (1981). Subsequently it was shown by Hall (1984) and Papageorgin (1957) that
the instability mechanism found by Seminara and Hall can ocenr in spatially localized
positions in more complicated unsteady bonndary laver flows.

The convection mode of instability of the unsteady thermal houndary laver ina semi
infinite mass of fluid adjacent to a time periodically heated rigid wall was iuvestizated
theoretically by Hall (1985). In the latter paper it was shown that the conveetion
problem for a fluid with Prandt]l number eqnal to unity is identical 1o that sovernine
the centrifugal instability problen. fo0 o flow wdjucent 1o a taphiiy rotating evimder
in a uniform stream. As yet only the severely truncated equations diseussed by Hall

have heen solved and the results found suggest that the most dangerons mode is g




snbharmonic one. If that is the only unstable mode then Hall's analyvsis suggests that
the How on a rapidly rotating cvlinder is stable sinee jn that problem the potar angle
0 plavs the role of time and solntions periodie in 8 with period 7 are of no physieal
relevance.

Another convection problem associated with time-periodic foreing is that disenssed
by Gresho and Sani (1970). The latter authors investigared the instability of o laver of
fluid heated steadily from below in a time-periodic gravity field. Tt was Tonud that the
stability problem is governed by Mathien's equation and that the dominant instability is
subharmonic one. The problem discussed by Gresho and Sani is of considerable practical
importance becanse of the presence of convection i a micro-gravity cnviroment where
vibrations cause the effective gravitational lield 1o be oseillatory in time.

The possible instability of time-periodic fows to travelling wave disturbances has
by contrast not received much attention. The fundamental problem here concerus the
lincar instability of a Stokes laver on a transversely oscillating rigid plane wall to waves
propagating in the flow direction. This problem was first investigated by Kerczek and
Davis (1971) who found that. even though the instantaneous profiles can be lughly -
flectional and therefore massively unstable. the oscillatory flow between parallel plates
15 stable according to a Floquet approach. Later Hall (197%3) showed that. even though
the Floquet solutions of Kerczek and Davis were greatly dependent on the presence
of a stationary wall, the Stokes laver on a wall oscillating in a viscous flnid is stable.
However the instantancous velocity profiles associated with a Stokes layer can be mas-
sively unstable on the basis of a quasi-steady analvsis. Such an approach is valid at
large Reynolds numbers, however the unstable solutions cannot be continued over a full
period of oscillation to produce Floquet solutions. More recent work by Akhavan et al
(1991a.b), based on full numerical simulations of the Navier-Stokes cquations. suggests
that transition to turbulence in Stokes layers can be attributed to higher order instabil-
ities associated with the primary instabilities of the instantancously inviseidly unstable
veloeity profile of the basic state.

We shall now disenss the main results found by BM in their experimental investiga-
tion of the flow iu a flapping rectangnlar tank. A more detailed discussion of the results
can be found in 54 of this paper.

I order 1o characierize the frequency of the flow AT introduced the parametor
& = L where w is the frequency of oscillation, v the kinematic viscosity and J as

v

shown in Figure (1.1). At a fixed value of the flapping angle o BM observed that for




small enough values of @ the How was stable. When & was inercased a bifnrcation 1o a
weak roll state took place at a eritical value of &, If this critical valne of @ is denoted
by @.; then BM showed that ¢ is a monotonically decrcasing funetion of o, At 4
second critical value of a. ¢, a strong roll state was found by BM and =t anflicicn v
small values of a this mode exhibited hysteresis. At higher values of @ wave modes were
observed experimentally though BM suggest these were associated with end effects. At
very high values of ¢ a turbulent tlow superimposed on some vesidual role struetinre was
observed in the expertments. The analysis in this paper will foens on the origin of the
strong vortex state found experimentally, however our results will also suagest o likely
candidate for a mode responsible for the onset of the wavy states.

In the following section we shall formulate the linear instability problen tor the
unidirectional flow in an infinitely long flapping tank. The equations we derive govern the
linear instability of the flow to disturbance periodic in the +* and == diveetions. I Seetion
3 these equations are discussed for roll modes which are taken to he independent of »7.
The particular cases of large and small @ are discussed in §3 whilst in §4 numerical resnlts
for @ of 0(1) size are presented and our results compared to experimental observations.
In Section 5 we discuss travelling wave disturbances which are independent of =7, Finally

i §5 we draw some conclusious.

2 Basic flow and the stability problem

Consider the flow of a viscous fluid in the rectangular container defined by

-L. < < L,, —g<y"<g. —L, <z < L. (2.1)
with respect to a Cartesian coordinate system (0= y*.z7). The flnid is taken to be
incompressible and the density and viscosity are denoted by p and v respectively, The
fluid is set in motion by the oscillation of the container abont the == axis with aneular
velocity (0,0, cw sinwt™). Following BM we define the frequency parameter & by

wd?

- (2.2)

144

sa that ® > 1 corresponds to a situation where viscous effects are small whilst ¢ < |
corresponds to a viscous dominated flow. We can suppose that the velocity and pressire
of the fluid are scaled on awd and apw?d? respectivelv whilst dimensionless variables

(z,y,2) and t are defined by




where 17 denotes time. With respect to the coordinate svstem moving with the tauk the

Navier Stokes equations take the form

divu = 0.

" ¥ i

l . .
u,+u(u-V)u——d—)Au:—Vp+2(xsml —u | Fasint] oy | 4eost | o~} (201

0 \ 0 !
which must be solved subject to
~1 ! -1 ‘=
u=0. on r=+xL.d", y= :i:;)—. =4 L.d7 {(2.5)
[f we write .
st . : .
p= 5 (r24+y?) —rycost+p
then (2..1) becomes
i 2y cost
l ~ . Y
u,-{—n(u'V)u-—&;Au: -Vp+2asint| -u | + 0 . (2.6)
0 0

and for convenience we now drop the A notation.
In order to make analytical progress we assume that L,/d. L./d are large so that we
can drop the houndary conditions at @ = +L,d™'. 2 = £L.d"'. As in BM this enables

1s to look for a unidirectional flow of the form

y
u = (u(y,t).0,0), v=w=0, p=-2asn t/ udy.

where
:(BI—'&,J,, + 1 = 2ycost,
t=0 y= :t% (2.7)
The required solution is
it={—yi +Ql'"+ COMPLEX CONJUGATE, {2.8)

where

[Es

z'sirrl}x [(id))' y]

 2sinh [(i‘b)%,—}.

i
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For large values of ® the function (0 is exponentially small away from layvers of depth
1

(D)2 near y = -

. Thus for large ® we tind that near y =

R

-

t

. . [ | T !
o= st —sm |+ \/’ :(,r/ — ;) (+\/?i.'1~~ ) P20

For small values of ¢ the flnid respouds in a quasi-steady ianner 1o the forcimg and we
obtain

| _,n_;“’}msf 4. (20

The flow in a tank rotating with constant angular velocity is then obtained from the
above by setting t equal to zero.

We now perturh the basie flow given by (2.8) by writing
u=(2.0.0)4[U(y.tyexpi {Ar + kz} + COMPLEX CONJUGATE] + ... {2.12)

If we assume that [U] < |1 then we can linearize the equations (2.6) to give

AU+ V, + RV = 0,
LU+ alVu, = —AP +2aV sint. 13
{24
LV = =P, = 2ol siut,
LW = —ikP.
Here the operator £ is defined by
L=—[—-N=ko"" +inku+d,. (2.11)
The equations (2.13) must be solved subject to
4 re s l Led
[l=V=W=0, y =% (2.15)

4

Since @ 15 a periodic function of time we anticipate that solutions of (2.13). {2.15) may
he found with

- - - ~

(VW PY = 0V WL P) (2.16)

where 7.V W and £ are periodic with respect to t and the Floguet exponent g is
complex and is a function of ®, «, A, k. The stability of the How is then determined
by the sign of g, if solutions of the form (2.16) exist with gy, > 0 then the fHow as
unstable. In the next section we discuss solutions of the eigenvalue probleny for the case
A = 0 which, following BM , we refer to as “roll” modes. In seetion 5 we investivate the

possibility of Tollmien-Schlichting wave instabilities.




3 Roll modes of instability

We shall now seek solutions of (2.13), (2.15) with A = 0, it is then convenient to elininate

HWoand P to give the following coupled pair of equations for I and 1
((‘)5 ~ &~ b = adV {({)y( oy (_Jg/( __,[} ,
(d’f -k - (D()’)(i}j — OV = =20k sint. (3.1

!
1, — “' — ‘;} = 0‘ y = j:—)—

It is of interest to note that (3.1) also governs the stability of a verticallv oscillating
Boussinesq fluid between parallel walls y = :{:%. In that case the fluid has Prandt]
pumber unity and the upper and lower walls have temperature proportional to % sinf
respectively whilst the fluid is subject to a gravitational tield proportional to <int. In
that case the Rayleigh number for the flow is a2®? so that at 0(1) values of & we should
anticipate unstable solutions of (3.1) for &« = 0(1). Before discussing the mumerical
solution of (3.1} for 0(1) values of a and @ it is instructive for us to first consider the

further limits ® — 0 and ¢ — oc.

Low frequency limit

¥

In the low frequency limit (3.1) redices to

. . 2 l d)-2 S. ¢ 5 -
((}j . (I)()t)(' = —20P {sin[ + dcost [U_ . _“} _ m 4 i 7

2 24 12 240
(3.2a)
(('); — k- d’(‘)e)((‘); — kY = =2a®h*U sin t, (3.2h)
|
'=V=V,=0, y= j:g (3.2¢)

We now indicate how a WK B type of solution of the above equations can be found. If
we set a = 0 then the equations for {7 and V decouple and it is easy to see that the flow
is stable with decay rates of size @71 on the | timescale. We anticipate that this decay
will then be balanced by growth associated with the apparently destabilizing terms on

the right hand side of (3.2a.b). This is achieved if a® ~ 0(1) so that we write

A N
ry = —
P

6




and let (V) = (Uyly) Voly)yexp{®~! [ adt} + ... The cigenvalue problem for the

local growth rate o is then found to be given by

[cii — k- olly = =2Asmily.
[r’[j ~ k= (7][(/5 — 1"2}‘;) = =24kt 3.4
. , : I
lo=V=k, v = i:)

Thus ¢ appears only as a parameter in the zeroth order problem so we have an ordinany
differential svstem to determine the cigenvalnes o = o (T. N, In fact by replacing
A & \ . !
Vosint by Vo we see that (3.3) is then equivalent to the Benard problem for a thad of
Prandtl number unity hetween the plate y = —% at temperature nnity and the plate
y = 5 al zero temperature. However the effective Ravlcigh nnmnber is — 1A% s £ o that
the flow is stable and o must have negative real part. This can Le seen from 1331 for

large values of A by writing

g = (T(;.“1+
(o = Up+.... 3.1
Vo = Voo + ...

The eigenvalue problem for oy then becomes

osld2 — k*Vy = 4k sin® 11 (3.5

, |
LO st 0, y= :t—)

We notice here that the limit A — oc is an inviscid one o that the eigenvalue problem
is now associated with a second order differential equation. In fact the cigenvalues of

(3.5) are
+2kisint
e e
VAT Y e

which means that the flow is inviscidly stable. Thus we have shown above that for & 5. |

n=123,... {3.6)

a® > | the disturbance has an imaginary growth rate of size 0(a).

The above discussion shows that no neutral disturbances exist for a® = 0(1). & < I.
In order to obtain neutral disturbances we must increase o until sufficient exponential
growth takes place near the times when sint = 0 to balance the exponential decay
associated with viscous effects at other times. The exponential growth takes place in
G(d) time intervals near the times when sin £ = 0; this means that a disturbance grows

e d2(r

by an amount of order ¢ for some constant (7. Viscous effects on the other hand

~3




>

. . e Vo - .
lead to decay by factors by size 7 for some DL Thas the decay rate decreases with

Ml o and @ are hield fixed, However when & inereases to 91 7 viccons otfocts i the
bulk of the How also come o play and o mininnon rate is achicved, We therefore seok

a ~sohition of 03,23 {or the small € case with
[f b (l‘!)‘fh, !;5.7%!?
b= N (3.7h,

hehd fixed.

We then expand 17 and Vi the form

(A =3 (0w )V ) T exp [d)‘}“z“ / 3 n,‘(mb*,//} (3.8
re—=t} b na=l)

with{, =V, =y = 0.

The leading order svstems to determine a7, are then fornnd to he

ffs)[ 'f} = _)\lnlh.lf
aoly = =2sintl W NI
(r()["} = Zsillf‘glf"ﬁzl")
- . . . a ‘:7'7
ooy = =25l B - ol + —ﬁ—);-i (3,103
R
The consisteney of (3.9) requires
ol = —isint 3! (3.11)

so that oy s purely imaginary and then (3.10) is consistent of

. [\'2()’.‘,
oy, = -

70

aud the sohition of this equation which vanishes at £1 = ¢ is

) . ]
Vo = sinnr(y + ;)\ £3.12)
with C'(t) to be determined and
A,]"':rz il .) . ;o N
Uz/”u M/\}_ o 208000 {3131




Thus oy is also prurely imaginary and indeed oy, a4, 05 are also imaginary. The equations

to determine gy are found to be

v K . , - - . , L ) g 1
aol s =28 sintVy = —lop g+ ol oyl ol + (o + Ko

+ 2B[qy costy 4+ gasint L]

(T()";g *.213\111[(,, = “{0’3‘:‘ +(T;;‘;; 4 fTA;";_g *‘}* fT_—,\.l +((T.; ‘:F l\:)‘“:
+ /\’—2[0};‘.} -+ Uz‘;_: + (Tf’»"l + 0,1\[')},,3“ (3.1 “
where
1y } y* T
=% - —. q@=—(y -+ —/12 {3151
2 24 2 240

If we eliminate Uy, VG from (5 .4} we obtain a differential equation for Vi Au examina-
tion of the disturbance structure in the viscous wall layers shows that the equation for

Ly must be solved subject to

, -1 1
vV, = %) C Y=g
"o ] (3.16)
VT —_— —-nr —_ 1
".1 = ‘:‘%‘ = 3
Y

If the equation for Vi is to have a solution satisfving these conditions then the real part
of g5 1s given by

2wt Bi|sint |z
K*?

N2 (3.17)

Tgr =

The amplitude function ('(f) is determined at higher order and is found to be singriar at
the mstants when oy vanishes. In order to find the disturbance structure at such times

we consider a small time interval near for example 1 = 0 and define
T=0""t (3.1%)

This scaling 1s implied by (3.24) which shows that the first and second terms in the
brackets on the right hand side of this equation are comparable whenever sinf ~ 019y,

We then note that (3.2) may then be written in the form

\

, N -2B I T VR U O
* el = e ey L2 R S ' SIRIY
(()y“‘(g—%“()])( = _; J 12-{‘ 5 + 5 + . [ (3. 19a)
, K*? . K% ~2BN*
(('},f - :;—2 —ap) (o7 - ;b‘“> Vo= ~—-b~;lv-{'1' TS ERTON
\ : : % T

These equations may be solved using a WKB approach to take care of the time depen-

dence and by noting that for small valiues of {(iy — 1) we can ignore the third and fourth




“

tertns in the bracket on the right hand side of (3.19a). In order to balance the time
derivative with terms on the right hand side of {3.19) we mst take dp = 00771 and
the y denendence of the disturbance then shrinks to a thin laver of thickness &5 e

y o= 20 In faet a similar faver exists near y = — % but the stracture is similar to that at

b free

the upper wall. We detine £ = (y = 5)¢ T and then look for a solution ol (3191 nea

ol the form

=

(V) = (3.2
S g L . ; bt . . .
“([nls.l“u(f[‘*“b”[;{f!)‘]ffIHH\p — / (4/“‘_/)':* ‘I’;./gi/l-‘r”,if/lj

If we substitute the above expansions into (3.19) and equate terms of the powers i ¢@°

we obtain at zetoth order a pair of lincar equations for Uy V0 The vonsisteney of these

cquations vields

g
Ji = —ABT (T + — (3.21)
12
so that we have an exponentially growing solution in
o
~— < T <
12

We assime that T is in this range and cousider the root of (3.21) with Jy > 0. At next

order we find that the linear equation for 7.V} obtained are consistent if

Py, 2, 1202
o 2Ny L2R7C (3.22)
aer " 27 1 1

This equation is then solved subject to Y, = 0. € = 0 and such that 1 — 0. & — —x.
This enables us to express Vi, in terms of solutions of Airy’s equation and the gquantity
Jy can then be expressed i terms of the zero's of A4,. The solution {3.22) fails when
T =0.T = =& and WKB turning point layers (with respect to 1) are needed to
connect (3.8) and (3.22). Across these layers the two oscillating solutions {3.8) with
7o = £2isinf 3 connect with the exponentially decaving and srowing solutions (3.20)
with J, = ﬁ:BB[*'/‘]%(T + ]l—l)% A periodic solution is obtained by choosing £2 such that
the exponential growth in “Tli < T < 0is identical to the exponential decay associated
with oy in (3.2). We note here that the particular forin of the time dependence of {3.9)
enables us to consider only the interval O < 1 < 7. [f we then consider the least decaving

solntion (3.17) with v = 1 we find that the smallest value of 12 which leads to a neatral

solntion of (3.9) for & < | satisfies

<

PR T L RN, ,
rrrrr e / [sintledt + Worn = 2B / [~T(T + —))dT. (3.23)
FINES S 12

10




The above equation can theu be solved for B35 (plicitly assumed 1o be positive in the
derivation of (3.23)) as a function of Ao Figure (3.1) shows £ as a fanetion of A0 we
see that B ~ K,7% B ~ K,7! for small and large A respectively and that /8 attaine o
minimum at some intermediate value of A

[f the integral on the left hand side of (3.23) ix integrated nnmerically we find that the
minimum occurs when

B = 73630. (3.2 1
K =7.499. (3.2
Thus the most dangerous mode for ® < 1 has o given by
73630
G

a = {3,205
We postpone further discussion of {3.25) until the next section where we disenss the

numerical solution of the eigenvalue problem for & = 0(1).

The high frequency limit

For large values of the frequency parameter ® the function Q(y} appearing in the stability
. /v . L . .

equations (3.1) develops boundary layers of thickness 77 at y = +1and is exponentially

small elsewhere. It follows that any instability must be localized in these lavers <o for

definiteness we focus on the layer at y = —{ and define

| .
r):¢%(g/+3). (3.26)
The dominant terms on the right and left hand sides of (3.1) then balance for = 0(1)
if
[ ~aVdr, V~al

. 1 N
with & ~ 0(®z). Hence we must take o ~ ¢+ and write

B

by
b= A‘b% 4+ ...




and the zeroth order approximation to (3.1) in the lower wall laver can he written

the form

(@2 — 0 = ol = v { b L COMPLEN CONJUGATE!

n V2 j

(02 = A2 = 9D = )W = 2Bk sint U, (4.27)
U=V =V,=0. p=0, 'V -0, 55— x.

Solutions of this system of the form
(U V) = e* (U (. 0). V(g 1)

can be found and the Floguet exponent g is then a function of B and k. Neutral solutions
then correspond to g, = 0 and the corresponding values of k. B are the neutral values
of the neutral wavenumber and angular displacement. In fact (3.27) is quite similar to
the eigenvalue problem solved by Seminara and Hall (1976). The latter authors were
concerned with the stability of the flow around a torsionally oscillating cvlinder. The
eigenvalue value problem g = u(k, B) associated with (3.26) is identical to that governing
the stability of a vertically oscillating Boussinesq fluid of Prandt! number unity subject
to a time periodic temperature heating at the wall. If the vertical oscillations are replaced
by a steady gravitational field then we obtain the eigenvalue problem discussed by Hall
(1985). It is of interest to note that in that case the growing modes correspond to
subharmonic disturbances.

A numerical investigation of the eigenvalue problem (3.27) showed that the only
growing disturbances have g, = 0 so that the disturbed flow is synchronous with the
basic flow. Our calculations showed that the minimum value of B is given by B = 2.9

so that at high frequencies the boundary between stability and instability is given by

2.9
a=—+... {3.2%)
3

We postpone a comparison of the low and high frequency predictions found above to the

numerical solutions of (3.1) until the next section.

3%




4 Numerical solutions of the eigenvalue problem

for & =0(1)

On the basis of Floquet theory we anticipate that solutions of (3.1} may be found 1 the
form
X

(V) = S {(Ul) Vi) e (1)

-~
and the sign of y,. the Floquet exponent, then determines the stability chiaracteristios of
the flow in question. We obtained values of g by substituting for (£.17) from (1.1} into
(3.1) and solving the infinite set of coupled ordinary differential eqnations obtained by
equating like powers of €' by a shooting procedure. Because of the symmetrics of the
basic state it is possible to show that the possible eigenfunctions ({7 (y). V..(y)) arc ¢ither
odd or even functions of y. This result was used to reduce the interval over which these
functions must be calculated to [0.3]. However note that all the results we obtained
correspond to even modes in y and the corresponding Floquet exponent was found to
be purely real. The latter result means that the disturbances are synehironous with the
basic state; we note here that the experimental investigation of BM found no evidence of
subharmonic instabilities. Finally before presenting our results we note that the nnmber
of Fourier terms used in the truncated form of (1.1) and the number of grid points in
the Runge-Kutta integration scheme were varied until convergence was achicved.

In Figure (4.1) we show a sequence of neutral curves in the & — & plane for several
values a. We see that there is a minimum value of ® on each neutral curve, above these
curves exponentially growing modes exist. If a is varied we can compute the a — @ locus
of the most dangerous mode, This curve is shown in Figure (1.2) and is labeled as T'1.
In this Figure we also show some of the experimental results of BM.

The labeled I, 11, I'11, IV and V were given by BM and represent rough boundaries
between different flow states. Below [ no roll state could be observed, whilst above this
curve weak rolls could be seen though their amplitude did not increase significantlyv until
I] was reached. Regimes associated with weak rolls WK™ are denoted by circlesin Fignre
(4.2). In fact we note that the small circles denote states where any horizontal structure
was barely visible whilst the intermediate circles denote moderate amplitude weak-rolls
with defects. The large circles denote defect-free weak rolls of moderate amplitude, It
appears that the theoretical curve T'1 predicts the onset of the strong roll cells associated
with I1. Despite an exhaustive search we coulu find any amplifving modes corresponding,

to the weak roll onset observed experimentally. We note here that no partienlar thine




dependence of the perturbation was imposed i our calenlations so that if subhannonie
or superharmonic modes were unstable they would have heen captured by the numerical
scheme. We conclude then that the curve T of BM is 1o be associated with end effects
in the experiment, certainly the fact that BM state that the roll amplitnde does not
increase significantly until 71 is crossed would tend to support this conclusion.

The diamonds (o) in Figure (1.2) denote the position where the onset of strong
rolls was observed by BM after a slight increase in @, For o < 907 BM found that
hysteresis took place and that the strong rolls did not disappear until a lower valne
of ® was achieved. These points are denoted by T in Figure (41.2). The symbol [/
was used by BM to denote regions where front propagation was observed. here strong
rolls consumed weak-rolls as a travelling wave front as ® was slowly increased. The
symbols 0,5 were used by BM to denote straight. defect {ree rolls and straight rolls
with defects respectively. In some cases BM observed wavy strong rolls. these occurred
in the same a — @ region as the straight rolls and these states are denoted for different
sidewall conditions by A, W1, At a fixed value of a the strong rolls exhibited multiple
superimposed wavy modes (MW V) which became more disorganized as ¢ increased.
Above curve [V strong-rolls with superimposed turbulence were observed by BM.

In Figure (4.3) we compare the critical wavenumbers of our theoretical predictions
with the observations of BM. We see again that the onset of the strong roll state again
correlates well with the theoretical work.

Finally we note that the most dangerous modes predicted by the asymptotic theories
for ® < 1, ® > | are denoted by the curves Al and A2 respectively in Figure (4.2). We
see that the high frequency prediction agrees well with the finite ® calculation whilst the
small ¢ prediction is not particularly accurate at the largest value of o used. However
since the latter theory is based on a > 1 and we have computed only for a < 3 we
presuine that the difference is because the asymptotic regime has not yet been achieved.
Indeed when « ~ 3 the curve T'| has ¢ ~ 50 which means that the unsteady boundary
layer has a thickness of about % thus the quasi-steady response of the basic state is not
vet operational.

In Figures (4.4a,b,c) we show that the first few Fourier modes of U,V for the most
dangerons mode at & = 1.1, 1.5, and 5. Note that these functions are even about y = 0
and that wu,.»,_; are zero when n is an even integer.

In order to see whether the wavy and turbulent states observed by BM are related to

travelling wave disturbances we shall in the next section discuss the possible existence




of Tollmien-Schlichting instabilities.

5 Tollmien-Schlichting wave disturbances

Here we investigate the possibility that travelling wave disturbances arc responsible
for the onset of instability in the flow in a flapping rectangular tank. We restrict our
attention to two-dimensional waves and therefore set . = W = 0 n (2.13). H the
pressure is eliminated from the z and y momentum equations we find that V7 satisfies

1

where we have defined the Reynolds number R by

{d; - )\2}2 V= {ﬂ‘f' ;;);Rd‘} {03 o )‘2} Vo= Vi, (5.1)

R=abd.

We see that the terms proportional to sint in (2.13) do not contribute to {5.1) which
1s therefore the generalization of the Orr-Sommerfield equation to an unsteady parallel
flow u = 7(y,1)

The equation {5.1) may be solved using the approach of Hall (1978) who nsed Floquet
theory to convert the same equation for a Stokes layer mean flow into an infinite sequence
of coupled Orr-Sommerfield equations. Here we shall restrict our attention to solutions
of (5.1) for small and large values of the frequency parameter ©.

In the high frequency limit we recall that @ is given by (2.1) for (y + %) =0(d77). A
similar asymptotic form applies in the upper boundary layer so that any instability will
be localized near y = £1. In fact @ given by (2.10) is exactly the Stokes layer velocity
profile for the case when the flow is driven by an oscillatory pressure gradient. Hence if

we define § = ®2(y + 1) and let

then (5.1) reduces to

1 . 1 IS
—— 82 _ 1\2 2V = {ﬂ—f— ~.—:(’9} 02 - Az V — ?AI.” V
. R( n ) AR ¢ { n } i

A
RS . . I a )
with & = sint — sin [{ + 5 evi. (5.2)

which is to be solved subject to
V=V,=0 7n=000. {(H.3)
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-
a Stokes layer to Tollmien-Schlichting waves; see Kerezek and Davis (1971). Hall (197%).
Thus the stability of the flow in a rectangular tank flapping at high frequencies is
governed by the equations which determine the stability of a Stokes laver. The Floguet
analysis of (2.14) given by Hall (1978) suggests that a Stokes laver is stable. on the
other hand the quasi-steady approaches of Kerczek and Davis (1971) show that nstan-
taneous profiles can he highly unstable because of their inflexional nature. The results
of these different approaches can be reconciled by noting that the quasi-steady solutions
caunot be connected to the Floquet solutions by extending them over a whole period.
Nevertheless the results of the quasi-steady calculations are consistent with experimen-
tal observations and suggest instability will occur for part of the period whenever R is
greater than about 200. This suggests that at high frequencies localized instabilities in
the form of Tollmien-Schlichting waves will occur when
200
-
2

a >

whilst roll modes occur when

It follows that. in an experiment with & fixed, transition will probably be caused by
Tollmien-Schlichting waves for small enough values of . However o must be less than
about .05 for the Tollmien-Schlichting wave to become dominant: this regime was not
investigated experimentally so it is not surprising that the asymtotic prediction given
above is off the scale of Figure (4.1).

Now let us turn to the low frequency limit & — 0, in this limit @ is given by (2.11)

and (H.1) may be written in the form

14

1 : : = ) . 4 =
5F {dj - ,\2}2 V= {ﬂcost +...4 f{f)t} {()_,j — Az} V — costiiy,V 4+ ... = 0. (5.4)

where U = —1%{1 —4y%}, R=9R. (5.5)

ol

The equation (5.4) is to be solved subject to the conditions that V. V) should vanish
at y = ﬂ:%. The slow time variation of the basic state can be taken care of for the
disturbance by a WK B approach, we therefore expand V in the form

—1AR

V = o828 [t {{"0(% t) + dﬂ;’](y‘ )+ .. ]

and ¢(t) is then determined by the instantaneous Orr-Sommerfield eigenvalue problem
] 512 - _ N 5y - S
By {()j - )\2} Vo = {(y) cost — ¢} {(); - )\2} Vo — costi,, V) = Q.
3 3
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The partial differential system (5.2)-(5.3) is identical to that governing the instability of




Vo=V, =0 y=0,1 (7

Thus the effective Revnolds number associated with the velocity tield Ty ) ix (Fcosty. I
Figure (5.1) we show the neutral curve A = MR cost) which marks the boundary hetween
locally growing and decaying solutions. Thus whenever £ and R are such that 1 cost i
greater than its value on the nentral curve at a fixed A the solntion is focally arowing.
We further note that Figure (3.1) is the neutral curve for the curve for the Tollmien-
Schlichting wave instability of the low a channel rotating with a steadyv angular velocity,
In addition it should be noted that all the eigenvalues we tound had zero wavespeed o
that the instability wave corresponds to a standing wave instability. However large we
choose R it will be the case that [f{cosll 1s sufficiently small for the part of the evele so
that the disturbance is locally decaying. The integrated value of the growth rate over
a cycle then determines the stability property of the flow according to Flognet theory,
Note that it is sufficient for us to consider only 1 a period of the basic flow su that the

neutral solutions based on Floquet theory are given by

1{/(:(-(1)(15} = 0. 5.

where [{} denotes the imaginary part of a complex quantity. In Figure (3.1} we also show

-1

o ¥

the neutral curve obtained by the imposition of this condition. We see that instability
occurs for R > 3965. and unstable modes occur over a finite range of values of the
wavenumber A. The fact that the band of unstable wavenumbers is finite is a direct
consequence of the fact that ¥ has an inflection point so that at any instant in time
when cost # 0 at sufficiently high values of R the instantaneous neutral prohlem has a
mode with ¢, = 0. Finally we note that our calculations predict the onset of Tollmien-
Schlichting instabilities when

o> - {H.%)

The unstable region predicted by (5.8) is off the scale in Figure (4.2} so it would appear
that in BM the wavy and turbulent regimes are not associated with Tollmien-Schiichting
waves. However it should be remembered that (5.8) is valid only for & < 1, at (1)
values of the frequency parameter the stability of the basic state can onlv be deter-
mined by solving (5.1) numerically. We do not pursue that caleulation here sinee onr
asymptotic results suggest that Tollinien-Schlichting waves are not important in the ex.
perimental range investigated by BM. Nevertheless the Floquet solutions of (5.1) are of
some interest since we know that at smali valiues of @ unstable solutions exist whilst at

targe @ the equation (5.1) governs the instability of a Stokes laver. Since no unstable




Floquet solutions have ever been obtained for the latter problem it will be of interest 1o

determine here the small ¢ unstable solutions become stabihized at larger &.

6 Conclusions

Our investigation has shown that the flowing an oscillating fluid tank is susceptible to
at least two types of instabilitv. The first mode is the roll mode having cell bonndaries
parallel to th @ — y plane whilst the other instability, the wave mode., is periodic in the o
direction. Furthermore in the low frequency limit the wave mode is stationary so that the
instability takes the form of rolls which are now parallel to the y — = plane. The onset of
the strong mode observed by BM is explained by the most dangerous linear disturbance
discussed in Section 4 of this paper. We believe that the weak roll observed hy BM
is a manifestation of end-effects in their apparatus and is therefore not accessible to a
linear instability analysis. The roll modes we have discussed have a close relationship
with centrifugal and convective instabilities in time periodic boundary lavers and it is of
interest to determine the destabilizing mechanismin the present situation. In fact we see
in (3.1) that the terms on the right hand side of the V equation, whici. are responsible for
tho instability, arise from the Coriolis terms in the Navier Stokes equation written down
in the rotating frame. Thus the roll mode is produced by Coriolis effects. On the other
hand the wave mode is associated with an inflection point instability in both the high
and low frequency limits. More precisely the wave instability discussed in §3 at small
values of ® is an inviscid instability associated with the inflectional velocity profile %(y).
Our calculations suggest that, low frequencies, this mode does not play a significant
role in the highly nonlinear stages investigated experimentally by BAM. However the
wave instability might be more unstable at finite values of the frequency parameter, this
possibility has not been investigated numerically but certainly the results of BM suggest
this as a strong possibility. At high frequencies the wave mode is a locally nnstable
Stokes layer instability, BM do not give any results which suggest that this instability
is present in their experiments. We note that this is a highly localized mode and so if it
were present in the experiments it would almost certainly be detected.

In addition to the higher order linear roll modes and travelling wave disturbances
there are other candidates for the secondary and tertiary instabilities obscerved in the
experiments. We refer to the 1nviscid modes induced by finite amplitude vortices in

boundary layer flows. These modes, which were discussed by Hall and Horseman (1991).




arise when a finite amplitude vortex modifies the underlving boundary laver so as to
make it unstable to Rayleigh waves. The secondary instability in that problem tends to
be created at particular spanwise locations but there is no snggestion that this tvpe of
localization oceurs in the flapping tank problem.

The author acknowledges some uselul conversations with Professor RO Kelly in
connection with this work. Support from SERC. NSE and Nasa Langles i gratefnily

acknowledged.
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Figure (1.1) The geometry of the tank and the coordinate system.
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Figures (4.4a,b,e) The eigenfunctions of the most dangerons modes for o = 1.1, 1.5 and 5. Note that

u,, and v,_, are zero when n is even.

26

(a)

Yy




1.0

0.6

0.4

0.2

0.0

-0.5 —-0.4 -0.3 -0.2 -0.1 0.0

27

(b)




28




~

Figure (5.1) The neutral curves associated with (5.6) with £ = 0, (lower envve) and the Floguet

theory prediction.
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